On Symmetric Power L-invariants of Iwahori Level Hilbert Modular Forms

نویسندگان

  • ROBERT HARRON
  • ANDREI JORZA
چکیده

We compute the arithmetic L-invariants (of Greenberg–Benois) of twists of symmetric powers of p-adic Galois representations attached to Iwahori level Hilbert modular forms (under some technical conditions). Our method uses the automorphy of symmetric powers and the study of analytic Galois representations on p-adic families of automorphic forms over symplectic and unitary groups. Combining these families with some explicit plethysm in the representation theory of GL(2), we construct global Galois cohomology classes with coefficients in the symmetric powers and provide formulae for the L-invariants in terms of logarithmic derivatives of Hecke eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Powers of Modular Representations for Groups with a Sylow Subgroup of Prime Order

Let V be a representation of a finite group G over a field of characteristic p. If p does not divide the group order, then Molien’s formula gives the Hilbert series of the invariant ring. In this paper we find a replacement of Molien’s formula which works in the case that |G| is divisible by p but not by p. We also obtain formulas which give generating functions encoding the decompositions of a...

متن کامل

Decomposing Symmetric Powers of Certain Modular Representations of Cyclic Groups

For a prime number p, we construct a generating set for the ring of invariants for the p+1 dimensional indecomposable modular representation of a cyclic group of order p. We then use the constructed invariants to describe the decomposition of the symmetric algebra as a module over the group ring, confirming the Periodicity Conjecture of Ian Hughes and Gregor Kemper for this case.

متن کامل

Reduction mod l of Theta Series of Level l n Nils -

It is proved that the theta series of an even lattice whose level is a power of a prime l is congruent modulo l to an elliptic modular form of level 1. The proof uses arithmetic and algebraic properties of lattices rather than methods from the theory of modular forms. The methods presented here may therefore be especially pleasing to those working in the theory of quadratic forms, and they admi...

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

Hilbert modular forms and the Gross-Stark conjecture

Let F be a totally real field and χ an abelian totally odd character of F . In 1988, Gross stated a p-adic analogue of Stark’s conjecture that relates the value of the derivative of the p-adic L-function associated to χ and the p-adic logarithm of a p-unit in the extension of F cut out by χ. In this paper we prove Gross’s conjecture when F is a real quadratic field and χ is a narrow ring class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013